
JBC CLIPWKS USER’S GUIDE

Introduction
CLIPWKS (pronounced "CLIP-WORKS") is a Clipper library that allows your program to transfer
data to and from Lotus, Excel, and Quattro spreadsheets. The library is designed to permit you to
create a spreadsheet with data and formulas, as well as specifying printer parameters, sort ranges and
keys, calculation parameters, protection, borders, and global alignment. In addition, the library allows
you to read existing spreadsheets and access any cell within the spreadsheet. Within limitations, it is
also possible to overwrite cell values with data of the same type.

CLIPWKS provides a set of high-level functions that can be quickly linked into an application to
provide spreadsheet import and export, and to produce spreadsheets from report form files. If you only
need to add spreadsheet translation to an existing program, these functions should allow you to get up
and running with a minimal amount of effort.

System Requirements
To develop applications using CLIPWKS, you must have a computer running MS-DOS or PC-DOS
(including DOS boxes within Windows), the Clipper 5.x compiler, and a linker capable of linking
Microsoft object modules. You can also use CLIPWKS within a protected mode program.

To use the NG online help program, you must have a copy of the Norton Guides program (that comes
with Clipper) or Expert Help and sufficient RAM to use them.

Installing CLIPWKS
CLIPWKS comes on a single floppy disk, which contains various versions of the library, a NG online
help file, and complete source code to the library. You merely need to copy the appropriate LIB file to
your Clipper library directory and the online help file to your NG directory. The source code is
included and installed in a separate directory. If you modify the source code, you will need to have
access to CLIPWKS.CH (included in the source directory). CLIPWKS.CH is not needed in your
application programs.

Linking CLIPWKS
CLIPWKS is protected mode compatible and can be linked by any linker that supports Clipper code.
There are three CLIPWKS lib files, depending upon which version of Clipper you are using:

• CLPWKS50.LIB - Clipper 5.01
• CLPWKS52.LIB - Clipper 5.2
• CLPWKS53.LIB - Clipper 5.3

Substitute the appropriate library file where shown in the examples below:

Exospace
C>exospace fi prog lib CLPWKS5x

Blinker (script file)
 FILE your_prog
 BEGINAREA
 ALLOCATE CLPWKS5x

PAGE 1

 ALLOCATE extend
 ENDAREA

RTLINK
 C>RTLINK FILE your_prog LIBRARY CLPWKS5x
 -or-
 C>RTLINK your_prog, , ,CLPWKS5x

License
1. Basic use: Joseph D. Booth Consulting, Inc. grants you, the user, an unlimited duration, non-
transferable license to install and use CLIPWKS (hereinafter called the software) on one computer at a
time. The software may not be networked, i.e. you cannot install it on a network for group use. Each
person using this software must have his or her own copy. A registered user of the software is
granted permission to keep one copy at his primary work location and a second copy at home. This
done not however permit a programmer to keep a copy of a company registered software at home, only
the software registered to the programmer.

2. Copying: The software is not copy-protected. However, it is protected by United States
copyright law, all rights reserved. It is illegal to create, distribute, or allow the distribution of
unauthorized copies of the software. You may make a reasonable number of backup copies, provided
they are strictly for the registered user’s convenience and use.

3. Integration: You may compile and/or link the source included and/or generated by the
software into your own executable program and distribute these programs without any royalty or
payment due to Joseph D. Booth Consulting, Inc. You may not, however, distribute copies of the
source code, even if modified by you, without the express, written permission of Joseph D. Booth
Consulting, Inc.

4. User Manual: This user manual is protected by US copyright laws. It cannot be
reproduced, transmitted, transcribed, stored in a retrieval system, or translated in any language in any
form with the prior written consent of Joseph D. Booth Consulting, Inc.

5. Governing law: This license agreement is governed by the laws of the Commonwealth of
Pennsylvania.

Limitation of Liability
Joseph D. Booth Consulting, Inc. will not be liable for consequential, special, indirect or other similar
damages or claims, including loss of profits or any other commercial damages. In no event will Joseph
D. Booth Consulting, Inc.'s liability exceed the price paid for the software, regardless of any form of
claim.

Technical Support
In order to make using CLIPWKS as easy and enjoyable as possible, we provide several forms of
support to registered users. In order to be eligible for support, you must register your serial number by

2

JBC CLIPWKS USER’S GUIDE

either mailing in the registration card or sending a message to either Compuserve or through the
internet.

Internet
You can reach tech support through the internet at Joe-Booth@WORLDNET.ATT.NET. Be sure to
leave your serial number. Messages are usually checked at least twice a day.

Compuserve
You can send messages to account number 72040,2112 on Compuserve if you'd like for technical
support. We usually check Compuserve messages at least twice a day.

FAX
You can reach tech support via the FAX at 610-409-8859. Faxes are usually responded to within 24
hours. Please include your serial number, and if possible, a sample of your CLIPWKS problem.

Telephone
You can call for voice tech support at 610-409-8858 between the hours of 9:00am and 3:00pm EST.
Please make sure you have your serial number handy. Voice support is only provided for registered
CLIPWKS users.

Trademarks
• CLIPWKS is a registered trademark of Joseph D. Booth Consulting, Inc.
• BLINKER is a registered trademark of Assembler Software Manufacturers, Inc.

PAGE 3

•
Chapter 1 - Importing and Exporting

CLIPWKS consists of a variety of functions to allow you to create and to read spreadsheets without
using the translation options built into many of the spreadsheet programs. There are two levels of
functions in CLIPWKS. The first level, covered in this chapter, is a high-level set of functions to
provide import and export ability between spreadsheets and .DBF's. The second level, covered in the
following chapters, allows your application to create spreadsheets which can be directly used by a
spreadsheet program, or to read data from spreadsheets into your Clipper application. Depending upon
your application, you should find enough functionality in CLIPWKS to solve a wide range of
spreadsheet access issues.

Importing data from a spreadsheet
CLIPWKS includes a program called import.prg. This program serves as an example of using
CLIPWKS as well as a useful function to quickly bring data into a .dbf file.

The Limport() function takes four parameters which control the spreadsheet data to be imported into
the DBF file. These parameters are the filename, the DBF name, an optional range of cells, and a
default field type to be used if CLIPWKS cannot make a field determination.

The first parameter is the spreadsheet name. It must exist and be a valid spreadsheet, otherwise
Limport will return an error code.

The second parameter is the name of the DBF file to put the data into. If the DBF file exists, its
structure is used and data is appended into the file. If you want a new file created, be sure to ZAP the
file before calling Limport().

If the file does not exist, then Limport() uses the first row in the range of cells to determine the types
and sizes of the fields in the .DBF file. Be sure to specify a cell range that does not include headers,
since this would result in all fields being character type, which might not be what you want. For
example:

 A B C
 1 Name Hire date Salary
 2 Bill Clinton 22-JAN-93 120000.00
 3 Al Gore 22-JAN-93 80000.00

Specify range A2..C3, rather than A1..C3. If CLIPWKS can not find a cell within the range, it defaults
to numeric. You can also specify the type of field to create if CLIPWKS cannot determine the cell
type. This is the fourth parameter and is optional.

The third parameter is the range name to import. This can be a named range, such as TAX or
SALARY (if these fields exist in the file) or cell coordinates separated by two periods (or a colon in
Excel). If the range is not specified, the entire spreadsheet is imported. If the range cannot be found,
then Limport() returns a error code.

Limport() contains a translation function which is used to try and convert spreadsheet data into the
DBF field. It will handle must transformations, such as Str() or logical values.
Exporting data to a spreadsheet

4

JBC CLIPWKS USER’S GUIDE

CLIPWKS provides a function which can be used to create a spreadsheet from an existing .DBF file.
The function’s name is Lexport(), which is the opposite of the Limport() function above. It allows
you to create a spreadsheet file from the contents of a DBF table. The parameters to the function are
described below:

Specifying Output FileName
The first parameter is the name of the spreadsheet file to be created. It can be a file name or a fully
qualified path and file designation.

Selecting Fields For Export
By default, the Lexport() function will transfer every field into a cell of a new spreadsheet. This can be
changed by specifying the second parameter, a field array. If passed, the field array will
specify which fields and in which order they should be written to the spreadsheet.

function demo
LOCAL aList_ := {"Soc_Sec","Last","First","Salary"}
 select PAYROLL
 Lexport("Payroll.wks", aList_)
return NIL

The field array may contain a size designation, which is separated from the field name by chr(124). For
example, if the third element in the example above were changed to:

 aList_[3] := "First | 1"

Then column C of the spreadsheet would only contain the first character of field->first. The field
reference can also contain embedded functions, for example:

 aList_[3] := "trim(last) + ',' + substr(first,1,1)"

In the example above, the last name and the first initial would appear within the first column.

If your array element contains a function rather than a field name, be sure to pass the size parameter. If
not Lexport() will default to 10 characters, which is the default width of a spreadsheet cell.

NOTE:
If headers are not desired in the spreadsheet, pass logical false as the third parameter to prevent headers
from being written to the file.

Specifying Headers
Lexport() will create column headers based on the field names. The third parameter, an array of
headers, can be used to override the default headers.

Selecting Records
The fourth parameter controls which records the Lexport() command should process. The default is all
records.

ALL Character string – transfer all records in the file.
FOR Expression -- only records meeting the filter expression.

PAGE 5

WHILE Key, conditions – seek the key, and do while condition is meet.
TAG A string the same number of characters as there are records in the database. If a check

mark chr(251) is found in the corresponding position based on -
substr(tag_list, recno(), 1)
the record will be written. If any other character is found, the record will not be transfered
into the spreadsheet.

EVERY Every record is written into the spreadsheet. This allows a sample of the file to be
extracted.

If an array is passed as the parameter it is assumed to contain record numbers of the records to be
transferred into the spreadsheet.

Voters.dbf
Name Character 25
Address Character 25
City Character 15
State Character 2
Did_Vote Logical 1
Party Character 1

To produce a spreadsheet of all voters with no headers, we would use the following syntax:
 Lexport("voters.wks", aList_, .F., "ALL")

To produce a spreadsheet of only Republicans Party="R", we would use the following sybtax:
 Lexport("voters.wks", aList_, .F., "FOR:party="R")

6

JBC CLIPWKS USER’S GUIDE

Chapter 2 - Creating Spreadsheets

CLIPWKS allows you to create spreadsheet files which can be read by the appropriate spreadsheet
program without special translation. CLIPWKS is not limited to only writing data, but also allows you
to write formulae and global settings. In this chapter, we will cover the functions needed to create a
spreadsheet and place data into it. We will also cover the functions available to set some of the global
settings.

Creating a spreadsheet
The Lcreate() function call is used to tell CLIPWKS you are going to create a spreadsheet. It expects
two parameters, the name of the file you wish to create, and the type of spreadsheet to create. For
example, to create an Excel 3.x file to contain payroll information, you could use the following code.

 aWks := Lcreate("PAYROLL","E3")

where PAYROLL is the name of the file, and E3 stands for Excel 3.x. If you do not specify a file
extension, CLIPWKS will select the appropiate one for the spreadsheet version. For Excel
spreadsheets, this would be .XLS. (Lotus 2.x uses .WK1, Lotus 3.x uses .WK3 Quattro uses .WKQ,
and Quattro Pro uses .WQ1).

If the Lcreate() succeeds, an array will be returned. It is essential that this array is save since the other
functions expect this array as a parameter. If the array is empty, then a problem occurred when
attempting to create the file. The most likely problem is that the file already exists and cannot be
overwritten or that you've specified a bad directory name. Immediately after creating a spreadsheet,
your code should check to make sure that this array is not empty.

function MakePR()
LOCAL aWks := Lcreate("PAYROLL","E3")
if empty(aWks)
 Alert("Problem occurred creating PAYROLL.XLS")
endif

Ok, now what...
Once you've called Lcreate() and saved the array that was returned, you are ready to start writing to
your spreadsheet. The array returned from Lcreate() must be passed as the first parameter to any
function you call while writing the spreadsheet.

When writing to the spreadsheet, you should specify the settings first, and then write the data. For
example, if you wish to turn global protection on, you would use the Lprotect() function after your call
to Lcreate(). You could also set other parameters and then put your data into the file.

PAGE 7

function MakePR()
LOCAL aWks := Lcreate("PAYROLL","E3")
if empty(aWks)
 Alert("Problem occurred creating PAYROLL.XLS")
endif
//
// Set global parameters
//
Lprotect(aWks,.T.) // Turn on Global protection
Lfooter(aWks,"For Review Only") // Print Footing

Global settings
The global settings determine how the spreadsheet is calculated, printed, and sorted. You can also
specify cell alignment and can write named ranges into the file.

Print settings
CLIPWKS allows you to control how a spreadsheet is printed. You can specify margins, heading and
footing strings, range of cells to print, etc. These settings are described in the
following section.

Lborders() This function sets the row and column borders which will be printed along the top
and left margin whenever the spreadsheet is printed.

Lfooter() This function allows you to specify the footer string to be written on the bottom of
each page when the spreadsheet is printed.

Lheader() This function allows you to specify the header string to be written.
Lmargins() This function allows you to specify the printer margins for the spreadsheet.
Lprint() This function allows you to specify whether the spreadsheet is printed in a formatted

(with borders and headers) or unformatted (just data) format.
LprtRange() This function allows you to specify the range of cells to print when the sheet is

printed.
Lsetup() This function allows you to specify the printer setup string to use when printing the

spreadsheet

Sort settings
With CLIPWKS, you can specify a sort range and up to two sort keys. Each key can be (D)escending
or (A)scending depending upon your application's needs. This section describes the sort parameters.
The sort range determines how much of the spreadsheet should be sorted and the sort keys determine
which column(s) are used to sort the data.

Lsortkey() This function specifies the primary column which the spreadsheet should be sorted
on. You can specify both the column range and the sort direction.

Lsortkey2() This function specifies the secondary column which the spreadsheet should be
sorted on. You can specify both the column range and the sort direction.

LsortRange() This function specifies which cells should be sorted

Spreadsheet appearance
CLIPWKS allows you to specify the global alignment for text cells and the column widths for various
columns in the file. This section describes these functions.

Lalign() This function allows you to set the global alignment to L)eft, R)ight or C)entered.

8

JBC CLIPWKS USER’S GUIDE

Lformat() This function allows you to specify the format for a range of cells. It is only used with
Lotus 3.x which does not store the cell formatting information with the cell.

Lwidth() This function allows you to specify the column width for a particular column or to set
the default column width for the spreadsheet

Now, for the actual data
Once the spreadsheet has been created and the global settings specified, you can start writing data into
the various cells. As with the global settings, the commands to place data into cells also expect the
array from Lcreate() as the first parameter.

Writing blank cells
Although blank cells are normally not stored when the spreadsheet is written, they can be stored if they
are referenced as part of a formula of if they contain special formatting. You can use the Lblank()
function in CLIPWKS to write a blank cell into the spreadsheet..

Writing data into cells
The Lput() function is used to write data and formulas into your spreadsheet. You need to pass three
parameters to Lput(), the first of which is the spreadsheet array returned from the Lcreate() function
call. The second parameter is the data itself. The data type of this parameter determines what kind of
cell CLIPWKS writes to the spreadsheet. The third parameter is the cell address that you’d like to
write the data to, such as A3 or B15, etc. You can use the Lc() function to convert row/column
coordinates into a spreadsheet cell reference. There is also a fourth parameter, which is optional. This
parameter specifies the formatting to apply to the cell, such as numeric, date, percent etc.

Data
type

Valu
e

Description

Numeric any Writes a numeric cell
Logical true @true formula

false @false formula
Date any @date() function
Char + or

@
Clipwks assumes this is a formula and attempts to parse your expression into a formula.
If Clipwks can create a formula- it will write a formula cell into the spreadsheet.

/x The character following the slash is repeated across the width of the column. This is
handy for underling headings- etc.

any A label cell is written with the text you pass

The option cell format parameter can be one of the following format attributes which a number of
decimals.specifed.
Format Meaning
Dx Date 1=DD-MMM-YY

2=MMM-YY
3=DD-MMM

Fd Fixed [d]ecimals
Pd Percent [d]ecimals
,d Comma [d]ecimals
Cd Currency [d]ecimals
Sd Scientic Notation [d]ecimals

PAGE 9

Chapter 3 - Reading Spreadsheets

CLIPWKS provides two methods for reading cells from a spreadsheet. The first is LfindFirst() and
LfindNext() which sequentially reads every cell from the spreadsheet. This is the fastest method
CLIPWKS offers for reading a spreadsheet.

The code below shows a function that will read all the cells in the file and display the cell address and
its contents.

procedure main(cFile)
LOCAL aWks := Lread(cFile)
LOCAL aCell
if !empty(aWks)
 aCell := LfindFirst(aWks)
 while !empty(aCell)
 ? padr(aCell[4],8)," ",aCell[1]
 aCell := LfindNext(aWks)
 enddo
 Lclose(aWks)
else
 Alert("Error occurred opening the spreadsheet!")
endif
return

CLIPWKS only requires three function calls to read any spreadsheet. First you must open the
spreadsheet using Lread(). This function returns an array of information used by the other CLIWPKS
functions. The Lget() function expects the array from Lread() and can be used to retrieve the contents
of any cell within the file. The final function, Lclose(), takes the array as the parameter and closes the
file.

The code below shows a function that will open the spreadsheet and return the contents of a specified
array of cells.

procedure main(cFile,aCells)
 LOCAL aWks := Lread(cFile)
 LOCAL nSize := len(aCells)
 LOCAL arr_ := array(nSize)
 LOCAL x

 if !empty(aWks)
 for x := 1 to nSize
 arr_[x] := Lget(aWks,aCells[x])
 next
 Lclose(aWks)
 else
 Alert("Error occurred opening the spreadsheet...")
 arr_ := {}
 endif
return arr_

10

JBC CLIPWKS USER’S GUIDE

Chapter 4 - Function Listing

The following section lists all the functions with the CLIPWKS library. They are grouped together by
usage class.

Writing functions
Lalign() Set label alignment
Lblank() Write a blank cell into the worksheet
Lborders() Write print borders into the worksheet
Lcalcmode() Set calculation mode
Lcalcorder() Set calculation order
Lcreate() Creates a new spreadsheet
Lfirstcell() Set first cell address
Lfooter() Write footer string into the spreadsheet
Lformat() Set the format for a range of cells
Lheader() Write header string into the spreadsheet
Literate() Set the formula recalculation iteration flag
Lmargins() Write printer margin information into the spreadsheet
Lname() Write a named range into the spreadsheet
Lprint() Write select formatted or unformatted spreadsheet printing
Lprotect() Set the global protection flag in the spreadsheet
Lprtrange() Write print range of cells to spreadsheet
Lput() Writes data to the spreadsheet
Lrange() Write number of rows/columns into spreadsheet
Lsetup() Write printer setup string into the spreadsheet
Lsortkey() Writes the primary sort key out to the spreadsheet
Lsortkey2() Writes the secondary sort key out to the spreadsheet
Lsortrange() Writes the sort range out to the spreadsheet
Lwidth() Set the column to the specified width

High-level functions
Lexport() To export a .DBF file to a spreadsheet
Limport() To import a spreadsheet into a .DBF file
Frmtowks() To convert a report form file to a spreadsheet

Reading functions
Lcols() To determine number of columns in spreadsheet
Lfindfirst() To return the first cell in the spreadsheet
Lfindnext() To return subsequent cells from either Lfindfirst() or Lget()
Lget() To return the contents of a cell
Lgetcell() To return an array of cell attributes
Lgetrange() To return an array of spreadsheet cells
Lread() To open a spreadsheet for reading
Lreplace() To replace an existing cell's contents
Lrows() To determine number of rows in spreadsheet
Ltype() To return the type of a cell
Miscellaneous functions
Lc() To convert row and column coordinates to spreadsheet notation

PAGE 11

Lclose() To write the EOF op code and close the file handle
Liswks() To test if a file is a valid spreadsheet
Lr() To convert row and column coordinates to spreadsheet range
Lversion() To determine the version of the spreadsheet

Lexport() EXPORT.PRG

Purpose To export a .DBF file to a spreadsheet
Syntax Lexport(cSpreadsheet, aFld_exp, aHdg_exp, cRecords, cVersion)
Parameters
 cSpreadsheet name of the spreadsheet to create
 aFld_exp array of fields to export
 aHdg_exp array of heading expressions
 cRecords which records to write to spreadsheet
 cVersion type of spreadsheet to produce

Returns nStatus
Notes Lexport() is a high-level function use to transfer records from a .DBF file into a spreadsheet. A
great degree of flexibility is provided, including control of the fields and headings, and the selection of
records to write to the spreadsheet.

cWksfile is the name of the spreadsheet to create. It defaults to the work area name

aFields is either an array or a semi-colon delimited list of fields/functions to place in each column of
the spreadsheet.

aHeaders is a corresponding array or semi-colon delimited list of header strings. Each element
contains the header for the parallel entry in the aFields array. If aHeaders is a logical .F., no headers
will be written to the spreadsheet.

cRecs is a character string indicating which records to transfer into the spreadsheet.

CVersion is a two character abbreviation indicating the type of spreadsheet you with to create

L1 - Lotus 1.x QU - Quattro
 L2 - Lotus 2.x QP - Quattro Pro
 L3 - Lotus 3.x SY - Symphony
 E2 - Excel 2.x E3 - Excel 3.x for Windows
 E4 - Excel 4.x

12

JBC CLIPWKS USER’S GUIDE

Limport() IMPORT.PRG

Purpose To import a spreadsheet into a .DBF file
Syntax Limport(cSpreadsheet,cDBF_file [,cRange] [,cDefType])
Parameters
 cSpreadsheet name of the spreadsheet to read
 cDBF_file name of .DBF file to import into
 cRange optional range of cells to import
 cDefType optional default field type

 Returns nStatus 0 = Ok
 -1 = Missing spreadsheet
 -2 = Problem opening the file
 -3 = Invalid range specified
 -4 = Field type unknown in header
 -5 = Problem creating the .DBF file

 Notes If the <cDBF_file> exists, it's structure is used and data is appended into the file. If you want
a new file created, be sure to ZAP the file before Limport().

If the <cDBF_file> does not exist, then Limport() uses the first row in the range of cells to determine
the types and sizes of the fields in the .DBF file. Be sure to specify a cell range that does not include
headers, since this would result in all fields being character type, which might not be what you want.

PAGE 13

FrmtoWks() FRM2WKS.PRG

Purpose To convert a report form file to a spreadsheet
Syntax Frmtowks(cReport_form, cSpreadsheet, cVersion)
Parameters
 cReport_form name of the report form file to use
 cSpreadsheet name of the spreadsheet to create- the extension is optional
 cVersion type of spreadsheet to produce- optional and will default to L2

Returns nStatus - -1 Form file is missing
 -2 I/O error reading form file
 -3 Invalid form file
 -4 Error creating spreadsheet
 -5 No current work area

 Notes: FRMTOWKS() is used to read standard report form files and create spreadsheets from their
contents. This allows you to give the user the option of printing to the screen/printer/ or a spreadsheet.
The valid spreadsheet types are:
 L1 - Lotus 1.x QU - Quattro
 L2 - Lotus 2.x QP - Quattro Pro
 L3 - Lotus 3.x SY - Symphony
 E2 - Excel 2.x E3 - Excel 3.x for Windows
 E4 - Excel 4.x
Example
function DoReport(cFile,cOutput)
 LOCAL nResult
 LOCAL nChoice := 0
 LOCAL aErrors := { "No such form file",;

 "Problem reading form file",;
 "Invalid report form file",;

 "Disk error creating spreadsheet",;
 "No active work area selected" }

 @ 10,10 prompt "Print report"
 @ 11,10 prompt "Display to the screen"
 @ 12,10 prompt "Make a spreadsheet"

 menu to nChoice

 do case
 case nChoice == 1
 report form (cFile) to printer
 case nChoice == 2
 report form (cFile) to console
 case nChoice == 3
 nResult := FrmToWks(cFile,cOutput)
 if nResult < 0
 Alert(aErrors[abs(nResult)])
 endif
 endcase
return NIL
Lalign() MISCWKS.PRG

14

JBC CLIPWKS USER’S GUIDE

Purpose Set label alignment, (L)eft,(C)enter,(R)ight
Syntax Lalign(aSpreadsheet,cAlignment)
Parameters aSpreadsheet - Spreadsheet array handle

cAlignment - Alignment method
Returns nStatus 0 All ok

 6 Invalid parameters

Notes: Text in a cell may be justified left, right, or centered. The Lalign() function is used to set the
global alignment to be used for text being written to cells. Lalign() is not used with Excel
spreadsheets.

Example
function DoReport(cFile,cOutput)
LOCAL aWks := Lcreate("TAXES","L2")
 Lalign(aWks,"C") // Set (C)entered alignment
 Lfooter(aWks,"Pennsylvania taxes")
 Lclose(aWks)
return NIL

Lblank() WRITEWKS.PRG

Purpose Write a blank cell into the worksheet
Syntax Lblank(aSpreadsheet, cCell, cFormat)
Parameters:
 aSpreadsheet spreadsheet handle array
 cCell Cell address to write blank into
 cFormat Format to write in cell

 Dx = Date 1- DD-MMM-YY
 2- MMM-YY
 3- DD-MMM
 Fd = Fixed [d] decimals
 Pd = Percent [d] decimals
 ,d = Comma [d] decimals
 Cd = Currency [d] decimals
 Sd = Sci Notation [d] decimals

Returns nStatus 0 All ok
 4 Invalid cell
 6 Invalid parameters

Notes Lblank() allows you to write a blank cell into a spreadsheet. Unless the cell is referred to by a
formula or has a different format, blank cells are normally not saved within a spreadsheet.

Lborders() MISCWKS.PRG

Purpose Write print borders into the worksheet
Syntax Lborders(aSpreadsheet,cTop_range,cLeft_range)

PAGE 15

Parameters
 aSpreadsheet Spreadsheet handle array
 cTop_range Range of cells for top border
 cLeft_range Range of cells for left border

 Returns nStatus 0 All ok
 5 Invalid range
 6 Invalid parameters

 Notes: Borders are ranges of cells that are printed along the left margin and the top row of a printed
spreadsheet. Be sure to keep the borders in mind when you set the print range of the spreadsheet.

Example
function main
 LOCAL aWks := Lcreate("PARYOLL","L3")
 if !empty(aWks)
 Lborders(aWks,"A1..G2","A2..A10")
 Lclose(aWks)
 endif
return ""

Lcalcmode() MISCWKS.PRG

Purpose Set calculation mode
Syntax Lcalcmode(aSpreadsheet,cMode)
Parameters
 aSpreadsheet Spreadsheet handle array
 cMode Calculation mode
 (A)utomatic
 (M)anual
 (B)ackground

 Returns nStatus 0 All ok
 6 Invalid parameters

Notes The calculation mode determines how often a spreadsheet's formula are recomputed. In you
choice (A)utomatic, the spreadsheet will update all formulas as soon as a cell value affecting the
formula is changed. If you choice (M)anual, you need to press a key, (usually F9), to recalculate the
file. (B)ackground allows the spreadsheet to be recalculated while it is waiting for keystrokes from the
end-user. If you create a spreadsheet using CLIPWKS and set the calcmode to (M)anual, be sure to
have your end-user press F9 as soon they read in the spreadsheet. CLIPWKS does not calculate the
values from the formulas it writes to the spreadsheet.

Lcalcorder() MISCWKS.PRG

Purpose Set calculation order
Syntax Lcalcorder(aSpreadsheet,cOrder)
Parameters
 aSpreadsheet Array of spreadsheet parameters
 cOrder Calculation order

16

JBC CLIPWKS USER’S GUIDE

 (R)owwise
 (C)olumn
 (N)atural

Returns nStatus 0 All ok
 6 Invalid parameters

Notes Calculation order determines when dependent cells are recalculated in order to resolve any
formulas. Natural calculation order means that before a formula is computed, each cell it refers to is
calculated first to ensure accurary. In column recalculation order, calculation starts in the first
column and proceeds down. It ignores formulas in other columns. Rowwise works similarly,
calculating rows at a time. The preferred method is (N)atural.

Lcreate() WRITEWKS.PRG

Purpose Creates a new spreadsheet
Syntax Lcreate(cFilename, cVersion)
 Parameters
 cFilename Name of new spreadsheet to create
 cVersion Spreadsheet version

Valid spreadsheet versions are:

 QP - Quattro Pro L1 - Lotus 1.x E2 - Excel 2.x
 QU - Quattro L2 - Lotus 2.x E3 - Excel 3.x
 L3 - Lotus 3.x E4 - Excel 4.x

 Returns aSpreadsheet

The spreadsheet is an array which needs to be passed to other CLIPWKS functions used when writing
spreadsheet files.

PAGE 17

Lfirstcell() MISCWKS.PRG

Purpose Set first cell address
Syntax Lfirstcell(aSpreadsheet,cAddress)
Parameters
 aSpreadsheet Spreadsheet array handle
 cAddress First cell address

Returns nStatus 0 All ok
 6 Invalid parameters

Notes: Setting the first cell allows you to have an automatic macro startup when the user invokes
your spreadsheet.

Lfooter() PRINTWKS.PRG

Purpose Write footer string into the spreadsheet
Syntax Lfooter(aSpreadsheet,cFooting)
Parameters
 aSpreadsheet Spreadsheet handle array
 cFooting Footer string

Returns nStatus 0 All ok
 -6 Invalid parameters

 Notes The footer string appears on the bottom of each page whenever the spreadsheet is printed. It
may be up to 240 characters in length. Lfooter() is used to specify the footing string.

Example
function main
LOCAL aWks := Lcreate("PAYROLL","L3")
if !empty(aWks)
 Lheader(aWks,"Joseph D. Booth Consulting, Inc.")
 Lfooter(aWks,"For review only")
 Lclose(aWks)
endif
return NIL

18

JBC CLIPWKS USER’S GUIDE

Lformat() MISCWKS.PRG

Purpose Set the format for a range of cells
Syntax Lformat(aSpreadsheet, cRange,cFormat)
Parameters
 aSpreadsheet Spreadsheet array handle
 cRange Range of cells
 cFormat Format to write in cell
 Dx = Date 1- DD-MMM-YY
 2- MMM-YY
 3- DD-MMM
 Fd = Fixed [d]ecimals
 Pd = Percent [d]ecimals
 ,d = Comma [d]ecimals
 Cd = Currency [d]ecimals
 Sd = Sci Notation [d]ecimals
 Returns nStatus - 0 All ok

 -5 Invalid range
 -6 Invalid parameters

Notes: The Lformat() function is only needed with Lotus 3.x files. Lotus 3.x stores the format
information in the header rather than the individual cells. If you need special formats in
Lotus 3.x from CLIPWKS, you must use the Lformat() function first.

Lheader() PRINTWKS.PRG

Purpose Write header string into the spreadsheet
Syntax Lheader(aSpreadsheet,cHeading)
Parameters
 aSpreadsheet Spreadsheet handle array
 cHeading Heading string
Returns nStatus - 0 All ok

 - 6 Invalid parameters
Notes The header string gets printed at the top of each page whenever the spreadsheet is printed.
The Lheader() function is used to specify this string. It may be up to 240 characters long.
Example:
 function HeaderDemo
 LOCAL aWks := Lcreate("PAYROLL","L3")

 if !empty(aWks)
 Lheader(aWks,"Joseph D. Booth Consulting, Inc.")
 Lfooter(aWks,"For review only")
 Lclose(aWks)
 endif
 return NIL
Literate() MISCWKS.PRG

Purpose Set the formula recalculation iteration flag

PAGE 19

Syntax Literate(aSpreadsheet, nCount)
Parameters
 aSpreadsheet Array of spreadsheet parameters
 nCount Iteration count

Returns nStatus - 0 = All Ok
 - 6 = Invalid parameters

Notes: On some complex formulas, multiple iterations are needed to get an acceptable degree of
accuracy. You may specify the number of iterations to perform on formula calculations using the
Literate() function. The default value is one iteration.

Lmargins() PRINTWKS.PRG

Purpose Write printer margin information into the spreadsheet
Syntax Lmargins(aSpreadsheet, nLeft, nRight, nPage, nTop, nBottom)
Parameters
 aSpreadsheet Spreadsheet handle array
 nLeft Left margin in columns
 nRight Right margin in columns
 nPage Lines per page
 nTop Top margin in rows
 nBottom Bottom margin in rows

 Returns nStatus - 0 = All Ok
 - 6 = Invalid parameters

 Notes Lmargins() is used to specify the margins and page length. The left and right margin can be
between zero and 254 characters. The top and bottom margin can be between zero and 32 lines. The
page length can be between one and 100 lines.

Default values for various margins are listed below:

 Left 3 Excel margins are measured in
 Right 78 inches, so be sure to keep this
 Top 3 mind when specifying margins.
 Bottom 3 The defaults for Excel are an
 Lines 66 inch on each side.

Lname() MISCWKS.PRG

Purpose Write a named range into the spreadsheet
Syntax Lname(aSpreadsheet, cName, cRange)
Parameters
 aSpreadsheet Array of spreadsheet parameters
 cName Name for specified range
 cRange Range of cells

20

JBC CLIPWKS USER’S GUIDE

 Returns nStatus -0 = All Ok
 -5 = Invalid range
 -6 = Invalid parameters
 -7 = Missing range name

 Notes: A spreadsheet allows a range of cells to have a name assigned to them. This assists in
documenting function calls. The Lname() function writes an range name out to the spreadsheet. If a
formula references the range, it will display the range name when the formula is view.
 Example
 function DemoOne
 LOCAL aWks := Lcreate("PAYROLL","L3")
 if !empty(aWks)
 Lname(aWks,"SALARY","A1..A15")
 Lname(aWks,"TAXES","B1..B15")
 Lclose(aWks)
 endif
 return NIL

Lprint() PRINTWKS.PRG

Purpose Write select formatted or unformatted spreadsheet printing
Syntax Lprint(aSpreadsheet,cMethod)
Parameters
 aSpreadsheet Spreadsheet handle array
 cMethod (F)ormatted,(U)nformatted
Returns nStatus -0 = All Ok

 -6 = Invalid parameters
Notes: Spreadsheets are normally printed in formatted mode, showing both row and column headers.
You can instruct the spreadsheet to print either formatted or unformatted using the Lprint() function.

Example:
function PrnDemo
 LOCAL aWks := Lcreate("SALES","L3")
 if !empty(aWks)
 LPrint(aWks,"F") // Specify formatted printing
 Lclose(aWks)
 endif
return nil

Lprotect() MISCWKS.PRG

Purpose: Set the global protection flag in the spreadsheet
Syntax: Lprotect(aSpreadsheet,cSetting | lSetting)
Parameters
 aSpreadsheet Array of spreadsheet parameters
 cSetting ON | P - Enable global protection
 OFF | U - Disable global protection
 lSetting TRUE - Enable FALSE - disable

 Returns nStatus - 0 = All Ok

PAGE 21

 - 6 = Invalid parameters
Notes: Lprotect is used to enable or disable global protection. When protection is enabled, protected
cells may not be modified.

 Example
function ProtectDemo
 LOCAL aWks := Lcreate("SALES","L3")
 if !empty(aWks)
 LProtect(aWks,.T.) // Enable global protection
 Lclose(aWks)
 endif
return nil

Lprtrange() PRINTWKS.PRG

Purpose Write print range of cells to spreadsheet
Syntax Lprtrange(aSpreadsheet,cRange)
Parameters
aSpreadsheet Spreadsheet handle array
 cRange Range of cells to print

Returns nStatus - 0 = All Ok
 - 5 = Invalid range
 - 6 = Invalid parameters

 Notes: The print range determines what cells will be printed when the user prints the spreadsheet.
Be sure to keep in mind the value of the Lborders() settings when specifying the print range.

Example
function Demo
 LOCAL aWks := Lcreate("SALES","L3")
 if !empty(aWks)
 LPrtRange(aWks,"A1..G50")
 Lclose(aWks)
 endif
return nil
Lput() WRITEWKS.PRG

Purpose Writes data to the spreadsheet
Syntax Lput(aSpreadsheet, xData, cCell_address, cFormat)
Parameters
 aSpreadsheet spreadsheet handle array
 xData Data to write
 cCell_address Cell address to write data at
 cFormat Format byte for the cell

 Returns nStatus

 Notes: The type of data determines what gets written in the cell. Numeric data is written out
directly, logical data is converted to either the @TRUE or @FALSE function, and dates are converted

22

JBC CLIPWKS USER’S GUIDE

to the @DATE function. Character data is interpreted by the first byte. If the first byte is a plus sign +
or an ampersand @, then it is assumed to be a formula and the formula will be written out. Any other
first character will result in the data being written directly to the spreadsheet.
Example:
 Lput(aWks,"+A5*@SUM(B2..B6)","A1")
 Lput(aWks,date(),"A2")
 Lput(aWks,PAYROLL->salary,"A3")

Lrange() MISCWKS.PRG
Write number of rows/columns into spreadsheet

Purpose Syntax Lrange(aSpreadsheet, nRows, nColumns)
Parameters
 aSpreadsheet Array of spreadsheet parameters
 nRows Number of rows in spreadsheet
 nColumns Number of columns in spreadsheet

 Returns nStatus

 Notes: The Lrange() command is used to specify how many active rows and columns the
spreadsheet has.
 Example:
function main
 LOCAL aWks := Lcreate("SALES","L3")
 if !empty(aWks)
 Lrange(aWks,20,5) // 20 rows by 5 columns
 Lclose(aWks)
 endif
return nil

Lsetup() PRINTWKS.PRG

Purpose Write printer setup string into the spreadsheet
Syntax Lsetup(aSpreadsheet,cSetup)
Parameters
 aSpreadsheet Spreadsheet handle array
 cSetup Printer setup string

Returns nStatus

 Example
function DemoWks
 LOCAL aWks := Lcreate("SALES.WK1")
 if !empty(aWks)
 Lsetup(aWks,"/015")
 Lclose(aWks)
 endif
return nil

PAGE 23

 Notes: The printer setup string can include imbedded ASCII codes by using the backward slash
followed by the three digit ASCII code. For example, \015 would be used to set condensed mode on
most Epson printers. If multiple characters are needed, no space should be used to separate them.

Lsortkey() SORTWKS.PRG

Purpose Writes the primary sort key out to the spreadsheet
Syntax Lsortkey(aWks, cRange, cDirection)
Parameters
 aSpreadsheet Spreadsheet handle array
 cRange Range of cells
 cDirection (A)scending or (D)escending

 Returns nStatus - 0 = All ok
 - 5 = Invalid range
 - 6 = Invalid parameters

Example
procedure main
 LOCAL aWks := Lcreate("TAXES.WK1")
 if !empty(aWks)
 LsortKey(aWks,"A1..A50","A")
 Lclose(aWks)
 endif
return

 Notes: Lsortkey() defines the primary key that your spreadsheet should be sorted on. The range
may be sorted either (A)scending or (D)escending depending upon the needs of your application.

Lsortkey2() SORTWKS.PRG

Purpose Writes the secondary sort key out to the spreadsheet
Syntax Lsortkey2(aSpreadsheet, cRange, cDirection)
Parameters
 aSpreadsheet Spreadsheet handle array
 cRange Range of cells
 cDirection (A)scending or (D)escending
Returns nStatus - 0 = All ok

 - 5 = Invalid range
- 6 = Invalid parameters

Example
procedure main
 LOCAL aWks := Lcreate("TAXES.WK1")
 if !empty(aWks)
 LsortKey(aWks,"A1..A50","A")
 LsortKey2(aWks,"B1..B50","D")
 Lclose(aWks)
 endif
return

24

JBC CLIPWKS USER’S GUIDE

Notes: Lsortkey2() defines the secondary key that your spreadsheet should be sorted on. The range
may be sorted either (A)scending or (D)escending depending upon the needs of your application.

Lsortrange() SORTWKS.PRG

Purpose Writes the sort range out to the spreadsheet
Syntax Lsortrange(aSpreadsheet,cRange)
Parameters
 aSpreadsheet Spreadsheet handle array
 cRange Range of cells
Returns nStatus - 0 = All ok

 - 5 = Invalid range
 - 6 = Invalid parameters

Example
 procedure main
 LOCAL aWks := Lcreate("TAXES.WK1")
 if !empty(aWks)
 LsortRange(aWks,"A1..H50")
 LsortKey(aWks,"A1..A50","A")
 LsortKey2(aWks,"B1..B50","D")
 Lclose(aWks)
 endif
 return
Notes: The sort range determines which cells are sorted when the /DS command is executed. It is
normally all active cells within the spreadsheet.

Lwidth() WRITEWKS.PRG

Purpose Set a column’s width or to set the global width in the spreadsheet.
Syntax Lwidth(aSpreadsheet [,cColumn|nColumn], nWidth)
Parameters
 aSpreadsheet Spreadsheet handle array
 cColumn Column letter
 nColumn Numeric letter
 nWidth Width to set
Returns nStatus -0 = All ok

 -6 = Invalid parameters
Notes: Lwidth() is used to set a column width. You may specify the column using letter notation or
by referring to the column number. Widths should be set prior to any data being written to the
spreadsheet.
Example
 #include "DBSTRUCT.CH"
 function main
 LOCAL aWks := Lcreate("SAMPLE","L3")
 LOCAL aStruc := PAYROLL->(dbstruct())
 LOCAL i
 LOCAL nSize := len(aStruc)

PAGE 25

 if !empty(aWks)
 for i := 1 to nSize
 Lwidth(aWKs,i,aStruct[i,DBS_LEN])
 next
 Lclose(aWks)
 endif
 return .T.

Lcols() READWKS.PRG

Purpose To determine number of columns in spreadsheet
Syntax Lcols(aWks)
Parameters
 aWks Spreadsheet handle array
Returns nCols - Number of columns or -6 if invalid parameters
Example
function main
 LOCAL aWks := Lread("SALES.WK1")
 if !empty(aWks)
 ? "There are "+alltrim(str(Lrows(aWks)))+" and "
 ?? alltrim(str(Lcols(aWks)))+" in this spreadsheet"
 Lclose(aWks)
 endif
return nil
Notes: Lcols() is primarily used to build loops to read all cells in the spreadsheet, although
Lfindfirst() and Lfindnext() are the fastest methods of reading cells in sequential order.

Lfindfirst() READWKS.PRG

Purpose: To return the first cell in the spreadsheet
Syntax: Lfindfirst(aWks [,xColumn])
Parameters
 aWks Spreadsheet handle array
 xColumn Column letter to find first cell of
 nColumn Column number to find first cell of

Returns aCell - Array of cell information
 1) Cell data
 2) Cell type
 3) Physical size in spreadsheet
 4) Cell address
 5) Row number
 6) Column number
 7) Physical offset in file

 Notes: Lfindfirst() positions the spreadsheet to the first cell in the spreadsheet or in the specified
column. It also returns an array of cell information. Subsequent calls to Lfindnext() will obtain the
next cell.

 Example
function main

26

JBC CLIPWKS USER’S GUIDE

 LOCAL aWks := Lread("PAYROLL")
 LOCAL aCell
 if !empty(aWks)
 aCell := LfindFirst(aWks)
 while !empty(aCell)
 ? aCell[1]
 aCell := LfindNext(aWks)
 enddo
 Lclose(aWks)
 endif
return ""

PAGE 27

Lfindnext() READWKS.PRG

Purpose To return subsequent cells from either Lfindfirst() or Lget()
Syntax Lfindnext(aWks)
Parameters
 aWks Spreadsheet handle array
 Returns aCell - Array of cell information

 1) Cell data
 2) Cell type
 3) Physical size in spreadsheet
 4) Cell address
 5) Row number
 6) Column number
 7) Physical offset in file

Notes: Lfindnext() reads the next cell in the spreadsheet. It may start as a result of either a call to
Lfindfirst() or to Lgetcell(). If a cell is found, an array of cell information is returned. If no cell is
found, an empty array is returned.
 Example:
function main
 LOCAL aWks := Lread("PAYROLL")
 LOCAL aCell
 if !empty(aWks)
 aCell := LfindFirst(aWks)
 while !empty(aCell)
 ? aCell[1]
 aCell := LfindNext(aWks)
 enddo
 Lclose(aWks)
 endif
return ""

Lget() READWKS.PRG

Purpose To return the contents of a cell
Syntax Lget(aSpreadsheet,cCell)
 Parameters
 aSpreadsheet Spreadsheet handle array
 cCell Cell address to look for
 Returns xCell_contents - NIL if cell not found
 Notes: Lget() returns the contents of the specified cell address. The data type will vary depending
upon the cell's contents. If the cell contains the formulas @FALSE or @TRUE, a logical value will be
returned. If the cell is formatted as a date, then CLIPWKS will return a date value. Otherwise,
CLIWPKS will return either a numeric or character data. If the cell is not found, NIL will be returned.
 Example:
function ReadPayWk
 LOCAL aWks := Lread("PAYROLL.WK1")
 if !empty(aWks)
 ? Lget(aWks,"A1")
 ? Lget(aWks,"B2")
 Lclose(aWks)

28

JBC CLIPWKS USER’S GUIDE

 endif
return nil

Lgetcell() READWKS.PRG

Purpose To return an array of cell attributes
Syntax Lgetcell(aSpreadsheet,cCell)
Parameters:

 aSpreadsheet Spreadsheet handle array
 cCell Cell address to look for

Returns aCell_info - 1= Contents
 2 = Cell type
 3 = Cell length
 4 = Cell address
 5 = Row number
 6 = Column number
 7 = File offset

 Notes Lgetcell() returns an array with information about the specified cell address. If the cell is not
found, then NIL will be returned.

 Example
function Sample
 LOCAL aWks := Lread("PAYROLL.WK1")
 LOCAL aCell
 if !empty(aWks)
 ? aCell := Lgetcell(aWks,"A1")
 ? aCell[4],aCell[1]
 ? aCell := Lgetcell(aWks,"B2")
 ? aCell[4],aCell[1]
 Lclose(aWks)
 endif
return nil

PAGE 29

Lgetrange() READWKS.PRG

Purpose To return an array of spreadsheet cells
Syntax Lgetrange(aWks,cRange)
Parameters
 aWks Spreadsheet handle array
 cRange Range specifier or range name
Returns aContents - Contents of all cells within range
 Notes: Lgetrange() returns an array with the contents of the range. The range may be either a
named range, such as SALARY or a specified range such as A1..A15.
Example:
function OpenPayWks
 LOCAL aWks := Lread("PAYROLL.WK1")
 LOCAL aRange := {}
 if !empty(aWks)
 ? aRange := Lgetrange(aWks,"A1..B5")
 Lclose(aWks)
 endif
return nil

Lread() READWKS.PRG

Purpose To open a spreadsheet for reading
Syntax Lread(cFilename,lUpdate,lDates)
Parameters
 cFilename Name of spreadsheet to read
 lUpdate Whether CLIPWKS can update the spreadsheet
 lDates Whether to recognize dates in Lotus 3.x
Returns aWks - Spreadsheet handle array
Notes: Lread() is used to open an existing spreadsheet file for read access. You can also specify
TRUE as the second parameter, which will allow you to update the spreadsheet using Lreplace().
Lread() returns an array of information that is used by the other functions to retrieve data from the
spreadsheet. The third parameter is used when you are opening Lotus 3.x spreadsheets. Lotus 3.x does
not store format information with the individual cells, but rather in the headers. CLIPWKS needs to
evaluate these headers and create a bitmap to indicate which cells are formatted as dates. This
processing time can be eliminated if you know there are no dates in the spreadsheet. Passing a FALSE
as the third parameter controls this option. If the spreadsheet is large, this option can improve
peformance when opening the file.
Example:
function main
 LOCAL aWks := Lread("SALES.WK3",.T.,.T.)
 if !empty(aWks)
 Lget(aWks,"A2")
 Lget(aWks,"A3")
 Lclose(aWks)
 endif
return nil
Lreplace() READWKS.PRG

30

JBC CLIPWKS USER’S GUIDE

Purpose To replace an existing cell's contents
Syntax Lreplace(aWks, xData, cCell)
 Parameters
 aWks - Spreadsheet handle array
 xData - New data to replace into the cell
 cCell - Cell address to change
Returns nStatus - 0 = All ok

 - 6 = Invalid parameters
 - 12 = Spreadsheet open readonly

Example:
function main
 LOCAL aWks := Lread("PRESDENT.WK3",.T.,.T.)
 if !empty(aWks)
 Lreplace(aWks,"Bill Clinton","A2")
 Lreplace(aWks,"Al Gore","A3")
 Lclose(aWks)
 endif
return NIL
Notes:
Lreplace() allows you to change the values in an existing spreadsheet file. It also will allow you to add
new values into the file. By default, when you open a spreadsheet it is opened readonly so you do not
accidently replace data. See Lread() for the syntax to open spreadsheets for update.

Lrows() READWKS.PRG

Purpose To determine number of rows in spreadsheet
Syntax Lrows(aWks)
Parameters
 aWks Spreadsheet handle array

Returns nRows - Number of rows or -6 if invalid parameters

Example:
function main
 LOCAL aWks := Lread("SALES.WK1")
 if !empty(aWks)
 ? "There are "+alltrim(str(Lrows(aWks)))+" and "
 ?? alltrim(str(Lcols(aWks)))+" in this spreadsheet"
 Lclose(aWks)
 endif
return nil
Notes
Lrows() is primarily used to build loops to read all cells in the spreadsheet, although Lfindfirst() and
Lfindnext() are the fastest methods of reading cells in sequential order.

Ltype() READWKS.PRG

Purpose To return the type of a cell
Syntax Ltype(aSpreadsheet,cCell)
Parameters

PAGE 31

 aSpreadsheet Spreadsheet handle array
 cCell Cell address to look for

Returns xCell_type NIL - if cell not found
 C - Character

 D - Date
 L - Logical
 N - Numeric
 F - Formula
 B - Blank
 E - Error Cell
 NA - Not Applicable Cell

Lc() MISCWKS.PRG

Purpose To convert row and column coordinates to spreadsheet notation
Syntax Lc(nRow,nColumn [,nSheet])
Parameters
 nRow Row number
 nColumn Column number
 nSheet Worksheet number- Lotus 3.x only

Returns cCell_address

Notes Lc() is used to convert from row and column notation into spreadsheet cell addresses. It is
most often used in loops, as shown in the example below:

Example
 function main
 LOCAL k
 LOCAL j
 for k=1 to 10
 goto k // Goto record 'k'
 for j=1 to 5
 Lput(aWks,fieldget(j),lc(k,j))
 next
 next
 return nil

The row may be an integer between 1 and 8192 and the column an integer between 1 and 256.

LClose() WRITEWKS.PRG

Purpose To write the EOF op code and close the file handle
Syntax Lclose(aSpreadsheet)
Parameters
 aSpreadsheet Spreadsheet handle array
Returns nStatus 0 All ok

 2 I/O error occurred while closing
 6 Invalid parameters

32

JBC CLIPWKS USER’S GUIDE

Notes: After any spreadsheet is opened, either through Lcreate() or Lread(), you must close it to
release its buffer and its handle. If you do not close a newly created spreadsheet, there is a good
chance that some data will not be written out to the disk. Be sure to close all spreadsheets after you
are done with them.

LisWks() MISCWKS.PRG

Purpose To test if a file is a valid spreadsheet
Syntax Liswks(cFile|nHandle)
Parameters
 cFile File name
 nHandle Handle file is opened on
 Returns lSuccess
 Notes Liswks() tests the beginning and ending bytes of the file to see if the file appears to be a
valid spreadsheet file. It is useful to confirm the validity of a file if your application allows a user to
type in a spreadsheet name.

Lr() MISCWKS.PRG

Purpose To convert row and column coordinates to spreadsheet range
Syntax Lr(nTopRow, nTopColumn, nBottomRow, nBottomColumn [,nSheet])
Parameters
 nTopRow Row number
 nTopColumn Column number
 nBottomRow Bottom row number
 nBottomColumn Bottom column number
 nSheet Spreadsheet number - Lotus 3.x only
Returns cRange_address
Notes Lr() takes four coordinates and converts them into a cell address range. It is used to allow the
program to work in terms of numeric row and columns and let CLIPWKS handle the translation into
spreadsheet syntax.

Lversion Miscwks.prg

Purpose To determine the version of the spreadsheet
Syntax Lversion(cFile|nHandle)
Parameters
cFile File name
nHandle Handle file is opened on

Returns cVersion L1 - Lotus 1.x
L2 - Lotus 2.x
L3 - Lotus 3.x
L4 - Lotus 4.x
LJ - Lotus J
QU - Quattro

PAGE 33

QP - Quattro Pro
E2 - Excel 2.x
E3 - Excel 3.x
E4 - Excel 4.x

Notes
If the file|handle appears to be a valid spreadsheet, this function will return a two character code
indicating the version of spreadsheet it appears to be. If the file or handle does not appear to be a
spreadsheet, then an empty string will be returned.

34

JBC CLIPWKS USER’S GUIDE

Chapter 5 - Trouble Shooting
There are various problems that might occur using CLIPWKS. Some of the more common problems
are explained here. Be sure to review this section before calling for technical support.

Empty array from Lcreate()
Lcreate() uses the Fcreate() function to open a spreadsheet file. If Fcreate() fails, then an empty array
will be returned. Examine the value of FERROR()immediately after the call to Lcreate(). The error
returned from Ferror() will indicate what caused the problem. The most likely DOS errors you will
run into are:
Ferror Meaning
 4 Too many files open - so increase your file handles
 5 Access denied - probably because a file already exists and is set to read-

only or the network denies access to the file
 15 Invalid drive specified - check you file's drive letter
 19 Attempted to write to a write-protected - move the write protect notch or

write to a hard disk
 21 Drive not ready - so close the drive door

Empty array from Lread()
Lread() uses the Fopen() function to open a spreadsheet file. If Fopen() fails, then an empty array will
be returned. Examine the value of FERROR() immediately after the call to Lread(). The error
returned from Ferror() will indicate what caused the problem. The most likely DOS errors you will
run into are:
Ferror() Meaning
 2 File not found, check your spelling
 3 Path not found, check your path name and network rights
 4 Too many files open, so increase your file handles
 15 Invalid drive specified, check you file's drive letter
 21 Drive not ready, so close the drive door

Why are global parameters not getting updated?
Global settings and parameters must be written before any Lput() function calls are made. CLIPWKS
saves all your settings in a buffer and writes them to disk after you call Lput(). Any settings made after
the disk is written, will not be saved.

Blank or data cells are not properly formatted?
If you are using Lotus 3.x, keep in mind that you must use the Lformat() command to specify the range
of cells to format. Individual cells are not formatted in Lotus 3.x files

Why won't CLIPWKS open a spreadsheet?
CLIPWKS always attemps to verify that the file is a valid spreadsheet file. It does this by reading the
signature bytes in the file. Some new versions or spreadsheets created by other applications might not
be recognized by CLIPWKS. If you have such a beast, please send us a sample so that future
CLIPWKS releases can support it. CLIPWKS does not support Excel 5.x or above due to these files
being stored in an undocumented structure storage format. Microsoft does not recommend trying to
read these files from DOS, but rather through Windows DLL’s.
Chapter 6 - Examples

PAGE 35

The following programs show some examples of how you might use CLIPWKS.

Depreciation Table
Assume we need to build a chart comparing depreciation methods for a group of assets. The assets are
stored in a database file called ASSETS.DBF, which has the following structure.

Field Type Size
Desc Character 25.0
Cost Numeric 12.2
Salvage Numeric 12.2
Life Numeric 3.0

To produce a spreadsheet called DEPREC.WK1, which contains each asset, its cost, savlage value,
life, as well as formulas for computing various depreciation amounts, we could use the following code:

procedure DumpDepr
LOCAL wks_
LOCAL k := 2
LOCAL params

wks_ := Lcreate("DEPREC.WK1","L2")
if !empty(wks_)
 Lrange(wks_, reccount()+2, 7)
 Lwidth(wks_,"A",26)
 Lwidth(wks_,"B",13)
 Lwidth(wks_,"C",13)
 Lwidth(wks_,"D", 4)
 Lwidth(wks_,"E",13)
 Lwidth(wks_,"F",13)
 Lwidth(wks_,"G",13)

 ** Write column headers **

 Lput(wks_,"Asset Description","A1")
 Lput(wks_,"Cost","B1")
 Lput(wks_,"Scrap","C1")
 Lput(wks_,"Life","D1")
 Lput(wks_,"S/L","E1")
 Lput(wks_,"SYD","F1")
 Lput(wks_,"DDB","G1")

 ** Write underlines **

 Lput(wks_,"\=","A1")
 Lput(wks_,"\=","B1")
 Lput(wks_,"\=","C1")
 Lput(wks_,"\=","D1")
 Lput(wks_,"\=","E1")
 Lput(wks_,"\=","F1")
 Lput(wks_,"\=","G1")
 go top

36

JBC CLIPWKS USER’S GUIDE

 while !eof()
 params := lc(++k,2)+","+;
 lc(k,3)+","+lc(k,4)
 Lput(wks_,ASSETS->desc,lc(k,1))
 Lput(wks_,ASSETS->cost,lc(k,2))
 Lput(wks_,ASSETS->salvage,lc(k,3))
 Lput(wks_,ASSETS->life,lc(k,4))
 Lput(wks_,"@SLN("+params+")",lc(k,5))

 Lput(wks_,"@SYD("+params+",5)",lc(k,6))
 Lput(wks_,"@SLN("+params+",5)",lc(k,7))

 skip +1
 enddo
 lclose(wks_)
else
 Alert("Couldn't create DEPREC.WK1 file")
endif
close databases
return

Budget update from a spreadsheet
This example reads an existing spreadsheet and an existing database, and creates a new spreadsheet.
The database contains the chart of accounts and the spreadsheet contains budget information for the
upcoming year. We assume, for simplicity sake, that the spreadsheet is in the same order as the
database file, i.e. record one corresponds to row one in the worksheet. The file structure of the chart of
accounts is:

Field Type Size
Account Character 12.0
Desc Character 25.0
Budget Numeric 12.2

To produce a spreadsheet called BUDGET.WK1, which contains the updated budget information, we
could use the following code. This code will also update the budget field from the database.

LOCAL oldwks
LOCAL newwks
LOCAL k := 0
LOCAL newamt

use CHART new
oldwks := Lread("budget.wk1")
newwks := Lcreate("Budget.new","L2")

if !empty(oldwks) .and. !empty(newwks)
 while !eof()
 newamt := lget(oldwks,lc(++k,3))
 replace CHART->budget with newamt
 Lput(newwks,CHART->account,lc(k,1))
 Lput(newwks,CHART->desc,lc(k,2))
 Lput(newwks,newamt,lc(k,3))
 skip +1
 enddo
 Lclose(newwks)

PAGE 37

 Lclose(oldwks)
 rename budget.wk1 to budget.old
 rename budget.new to budget.wk1
else
 Alert("Problem with files")
endif
close all

return

38

